Statistical Computing in the Big Data Context
(and something about LibBi 2.x)

Lawrence Murray

University of Oxford

5 October 2015
Introduction

Software engineering

▷ Requirements
▷ Design
▷ Implementation
▷ Verification
▷ Maintenance
Introduction

Software engineering
- Requirements
- Design
- Implementation
- Verification
- Maintenance

Statistical engineering?
- Prior elicitation
- Experimental design
- Data acquisition
- Model specification
- Inference
- Model validation
- Model selection
- Decision making

Lawrence Murray
University of Oxford
Statistical Computing in the Big Data Context (and something about LibBi 2.x)
Big data

- **Complex computing**
 Bigger computer architectures are also harder to deploy to.

- **Complex data**
 Data gets bigger, but also more complex (e.g. from multiple modalities), which means...

- **Complex models**
 ...to bring those modalities together, and...

- **Complex methods**
 ...to fit them.
Complexity

Models:

- Assemble complex models from simpler models.
- Object-oriented programming provides an example (encapsulation, inheritance, polymorphism).

Methods:

- Assemble complex methods from simpler methods?
- Functional programming provides an example?

Minimise redundancy, minimise opportunity for error, minimise incremental workload.
Parallelism

Data parallelism
 ▶ GPU computing
 ▶ SIMD computing

Task parallelism
 ▶ Multithreaded
 ▶ Multiprocess

In statistical computing, task parallelism is often used merely to implement data parallelism (e.g. MapReduce, partitioning of data sets).
The Zen of Python

Tim Peters

Beautiful is better than ugly. // Explicit is better than implicit. // Simple is better than complex. // Complex is better than complicated. // Flat is better than nested. // Sparse is better than dense. // Readability counts. // Special cases aren’t special enough to break the rules. // Although practicality beats purity. // Errors should never pass silently. // Unless explicitly silenced. // In the face of ambiguity, refuse the temptation to guess. // There should be one—and preferably only one—obvious way to do it. // Although that way may not be obvious at first unless you’re Dutch. // Now is better than never. // Although never is often better than *right* now. // If the implementation is hard to explain, it’s a bad idea. // If the implementation is easy to explain, it may be a good idea. // Namespaces are one honking great idea – let’s do more of those!
Simulation as specification?

- *Plug-and-play* models [Bretó et al., 2009].
- *Black-box* models.
- Probabilistic programming languages.
- Approximate Bayesian Computation.
- Simulation in pedagogy [Tintle et al., 2015].
LibBi

- **LibBi 1.x** was designed for Bayesian inference with state-space models, using Sequential Monte Carlo (SMC) and Particle Markov Chain Monte Carlo (PMCMC) methods. It compiles to C++, and supports multicore CPUs with SIMD instructions, GPUs and distributed memory clusters.

- **LibBi 2.x** attempts to incorporate the preceding considerations into a more general-purpose data-parallel probabilistic programming language. It still compiles to C++, and will eventually support the same hardware as LibBi 1.x.

- See www.libbi.org for LibBi 1.x. More information on LibBi 2.x, including an early release, will be available there soon.
Programming languages and platforms

- **General purpose**
 - C, C++, Java, Python...

- **Statistical/scientific computing**
 - MATLAB, Octave, R, Julia...

- **Symbolic manipulation**
 - Mathematica, Maxima, Maple...

- **Model specification**
 - BUGS, JAGS, Stan, Biips, LibBi 1.x...

- **Probabilistic programming languages**
 - Church, Venture, Anglican, LibBi 2.x...

- **Method specification**
 - NIMBLE...
Example #1: Simulating Gaussians

```plaintext
/**
 * Example program to simulate standard normal variates.
 *
 * `n`     Number of samples.
 * `mu`    Mean.
 * `sigma` Standard deviation.
 * `s`     Pseudorandom number seed.
 */

program example_gaussian(n:Integer ? 5, mu:Real ? 0.0, sigma:Real ? 1.0, 
                          s:Integer ? 0) {
  rng:RNG;
  seed(rng, s);

  x:Real;
  i:Integer <- 0;
  while (i < n) {
    simulate(rng, x ~ gaussian(x | mu, sigma));
    printf("%f ", x);
    i <- i + 1;
  }
  printf("\n");
}

> libbi example_gaussian -n 5 -s 10
  0.112526  1.158317  -0.722317  -0.014193  -1.323151
```
Example #1: Simulating Gaussians

```cpp
template<class RngType>
void simulate(RngType& rng, Real& x, Real& mu, Real& sigma)
{
  x = rng.gaussian<Real>(mu, sigma);
}
```

```cpp
gaussian<Real>(x:Real | mu:Real, sigma:Real)
```

Lawrence Murray
University of Oxford
Statistical Computing in the Big Data Context (and something about LibBi 2.x)
Example #2: Conjugate prior

/**
 * Example program to simulate posterior normal variates.
 *
 * `n` Number of samples.
 * `mu0` Prior mean on `mu`.
 * `sigma0` Prior standard deviation on `mu`.
 * `sigma` Standard deviation.
 * `y` Observation.
 * `s` Pseudorandom number seed.
 */

program example_conjugate(n:Integer ? 5, mu0:Real ? 0.0, sigma0:Real ? 1.0, sigma:Real ? 1.0, y:Real ? 2.0, s:Integer ? 0) {
 rng:RNG;
 seed(rng, s);

 x:Real;
 i:Integer <- 0;
 while (i < n) {
 simulate(rng, x ~ gaussian(x | mu0, sigma0)*gaussian(y | x, sigma));
 printf("%f ", x);
 i <- i + 1;
 }
 printf("\n");
}

> libbi example_conjugate –n 5 –s 10 –y 2
1.079568 1.819054 0.489244 0.989964 0.064391
Example #2: Conjugate prior

```plaintext
    \[
    \text{simulate}(\text{rng}, x \sim \text{gaussian}(x \mid \mu_0, \sigma_0) \ast \text{gaussian}(y \mid x, \sigma))
    \]

/**
 * Simulate posterior distribution over unknown mean of Gaussian
 * with conjugate Gaussian prior.
 */

function simulate(rng:RNG, x:Real ~ gaussian(x \mid \mu_0:Real, \sigma_0:Real) *
    gaussian(y:Real \mid x, \sigma:Real)) {
    lambda0:Real <- 1.0/\sigma_0**2;
    lambda:Real <- 1.0/\sigma**2;

    mu1:Real <- (lambda0*\mu_0 + lambda*y)/(lambda0 + lambda);
    sigma1:Real <- sqrt(1.0/(lambda0 + lambda));

    simulate(rng, x \sim \text{gaussian}(x \mid \mu_1, \sigma_1));
}
```
Example #3: Indicator function

```plaintext
/**
 * Indicator function.
 *
 * `lower` Lower bound.
 * `upper` Upper bound.
 */
function indicator(x:Real | lower:Real, upper:Real);

/**
 * Simulate an expression that includes the indicator function.
 */
function simulate(rng:RNG, x:Real ~ @expr:*
    indicator(x | lower:Real, upper:Real)) {
    simulate(rng, x:Real ~ @expr);
    while (x < lower || x >= upper) {
        simulate(rng, x:Real ~ @expr);
    }
}
```
Example #3: Indicator function

```plaintext
/**
 * Indicator function.
 * `lower` Lower bound.
 * `upper` Upper bound.
 */
function indicator(x:Real | lower:Real, upper:Real);

/**
 * Simulate an expression that includes the indicator function.
 */
function simulate(rng:RNG, x:Real ~ @expr:
    indicator(x | lower:Real, upper:Real)) {
  simulate(rng, x:Real ~ @expr);
  while (x < lower || x >= upper) {
    simulate(rng, x:Real ~ @expr);
  }
}

/**
 * Simulate a truncated Gaussian.
 */
function simulate(rng:RNG, x:Real ~ gaussian(x | mu:Real, sigma:Real)*
    indicator(x | lower:Real, upper:Real)) {
  ...
}
```

Lawrence Murray
University of Oxford
Statistical Computing in the Big Data Context (and something about LibBi 2.x)
Expression matching

\[x: \text{Real} \sim @\text{expr}: \]

\[x: \text{Real} \sim \text{gaussian}(x \mid \mu: \text{Real}, \sigma: \text{Real}) \]

- Partial order on all code fragments.
- Method complexity can be handled using function overloads.
Example #4: Models

```cpp
/**
 * Generic model.
 */
model Model {
  function prior();

  function simulate_prior(rng:RNG) {
    simulate(rng, prior());
  }
}

/**
 * Specific model.
 */
model MyModel extends Model {
  variable mu:Real;
  variable sigma:Real;

  function prior() {
    mu ~ gaussian(mu | 0.0, 1.0);
    sigma ~ uniform(sigma | 0.0, 10.0);
  }
}
```
Example #4: Models

```plaintext
/**
 * Example program to simulate from a more complex model.
 *
 * `n` Number of samples.
 * `s` Pseudorandom number seed.
 * `output-file` Output file name.
 */

program example_model(n:Integer ? 5, s:Integer ? 0,
                      output_file:String ? "example_model.nc") {
    rng:RNG;
    seed(rng, s);

    m:MyModel[n];
    i:Integer <- 0;
    while (i < n) {
        m[i].simulate_prior();
        i <- i + 1;
    }

    out:NetCDFFile;
    out.open(output_file);
    create(out, m);
    write(out, m);
    close(out);
}
```

Lawrence Murray
University of Oxford

Statistical Computing in the Big Data Context (and something about LibBi 2.x)
Memory layout

```c
m:MyModel[n];
```

```
struct MyModel {
    double mu;
    double sigma;
}
MyModel m[n];
```

```
struct MyModel {
    double mu[n];
    double sigma[n];
}
MyModel m;
```

- "Array of structs" (left) type syntax is used, but a "struct of arrays" (right) implementation is used to facilitate data parallelism.
- Model complexity can be handled as in object-oriented languages, performance can be handled as in lower-level languages.

Lawrence Murray
University of Oxford

Statistical Computing in the Big Data Context (and something about LibBi 2.x)
Schema of models preserved in NetCDF files.

NetCDF is a high-performance binary format based on HDF5.
> ncdump example_model.nc

```c
netcdf example_model {
    dimensions:
        n = 10 ;
    group: m {
        dimensions:
            n = 10 ;
        variables:
            double mu(n) ;
            double sigma(n) ;
        data:
            mu = -0.917787219374395, -0.897920745559999...
            sigma = 7.15189364971593, 8.57945619849488...
    }
}
```
Summary

LibBi 2.x:

- Object-oriented paradigm for assembling complex models.
- Rich functions for assembling complex methods.
- Memory layouts facilitate data parallelism.
- More available soon at www.libbi.org