Sparse graphs using exchangeable random measures

François Caron

Department of Statistics, Oxford

Oxford/Warwick workshop
Scalable Statistical Methods for Analysis of large and complex data sets
October 9, 2015
Introduction

- Directed Multigraphs
 - Emails
 - Citations
 - WWW
Introduction

- Simple graphs
 - Social network
 - Protein-protein interaction
Introduction

▶ Simple graphs
 ▶ Social network
 ▶ Protein-protein interaction
Introduction

- Bipartite graphs
 - Scientists authoring papers
 - Readers reading books
 - Internet users posting messages on forums
 - Customers buying items
Introduction

- Build a statistical model of the network to
 - Find *interpretable structure* in the network
 - Predict *missing edges*
 - Predict connections of *new nodes*
Introduction

- Massive networks
 - Linkedin: \sim 300 millions
 - Facebook: \sim billion
 - Twitter: \sim 300 millions
 - www: \sim billion

- Capture large-scale properties of networks
- Scalable inference algorithms
Introduction

- Properties of real-world networks
 - Sparsity

 Dense graph: \(n_e = \Theta(n^2) \)

 Sparse graph: \(n_e = o(n^2) \)

 with \(n_e \) the number of edges and \(n \) the number of nodes

- Heavy-tailed degree distributions

- Latent structure

[Newman, 2009, Clauset et al., 2009]
Book-crossing community network
5,000 readers, 36,000 books, 50,000 edges

Readers

Books

Book-crossing community network
Degree distributions on log-log scale

(a) Readers
(b) Books
Introduction

- Simple graphs
- Adjacency matrix $X_{ij} \in \{0, 1\}$, $(i, j) \in \mathbb{N}^2$
- Joint exchangeability

$$(X_{ij}) \overset{d}{=} (X_{\pi(i)\pi(j)})$$

for any permutation π of \mathbb{N}
Introduction

- **Aldous-Hoover** representation theorem for exchangeable binary matrices

\[X_{ij} | U_i, U_j, W \sim \text{Ber}(W(U_i, U_j)) \]

with \(U_i \sim \text{Unif}(0, 1) \) and \(W : [0, 1]^2 \rightarrow [0, 1] \) a random function

- Several network models fit in this framework
 - Erdös-Rényi, (mixed-membership) stochastic block-models, infinite relational models, etc

Introduction

- Corollary of A-H theorem

 Graphs represented by an exchangeable matrix are either trivially empty or dense

- To quote the survey paper of Orbanz and Roy

 “the theory [...] clarifies the limitations of exchangeable models. It shows, for example, that most Bayesian models of network data are inherently misspecified”

Introduction

How to handle sparse graphs?

- Give up infinite exchangeability?
 - Non-exchangeable generative models
 - Preferential attachment model
 - Sequence of finitely exchangeable models \((X_{ij}^{(n)})_{1 \leq i, j \leq n}\)
 - Chung-Lu
 \[X_{ij}^{(n)} \sim \text{Ber}\left(\frac{w_i w_j}{\sum_{k=1}^{n} w_k} \right) \]
 - Sparsification of the graphon
 \[X_{ij}^{(n)} \sim \text{Ber}(\rho_n W(U_i, U_j)) \]
 with \(\rho_n \rightarrow 0\)

Point process representation

- Representation of a graph as a (marked) point process over \mathbb{R}^2_+
- Representation theorem by Kallenberg for jointly exchangeable point processes on the plane
- Construction based on completely random measures
- Properties of the model
 - Exchangeable point process
 - Sparsity
 - Heavy-tailed degree distributions
- Scalable inference

[Kallenberg, 2005, Caron and Fox, 2014]
Point process representation

Undirected graph represented as a point process on \mathbb{R}_+^2

$$Z = \sum_{i,j} z_{ij} \delta(\theta_i, \theta_j)$$

with $\theta_i \in \mathbb{R}_+$, $z_{ij} \in \{0, 1\}$ with $z_{ij} = z_{ji}$
Point process representation

Joint exchangeability
Let $A_i = [h(i - 1), hi]$ for $i \in \mathbb{N}$ then

$$(Z(A_i \times A_j)) \overset{d}{=} (Z(A_{\pi(i)} \times A_{\pi(j)}))$$

for any permutation π of \mathbb{N} and any $h > 0$
Completely random measures

- Nodes are embedded at some location $\theta_i \in \mathbb{R}_+$
- Each node has a sociability parameter w_i
- Homogeneous completely random measure on \mathbb{R}_+

$$W = \sum_{i=1}^{\infty} w_i \delta_{\theta_i} \quad W \sim \text{CRM}(\rho, \lambda).$$

Lévy measure $\nu(dw, d\theta) = \rho(dw) \lambda(d\theta)$

$$\int_{0}^{\infty} \rho(dw) = \infty \quad \Rightarrow \quad \text{Infinite number of jumps in any interval } [0, T]$$

$$\int_{0}^{\infty} \rho(dw) < \infty \quad \Rightarrow \quad \text{Finite number of jumps in any interval } [0, T]$$

[Kingman, 1967]
Model for undirected graphs

- For $i \leq j$

\[
\Pr(z_{ij} = 1 \mid w) = \begin{cases}
1 - \exp(-2w_i w_j) & i \neq j \\
1 - \exp(-w_i^2) & i = j
\end{cases}
\]

and $z_{ji} = z_{ij}$
Properties: Sparsity

\[N_\alpha \quad N^{(e)}_\alpha \]
Properties: Sparsity

Assume $\rho \neq 0$ and $\mathbb{E}[W([0, 1])] < \infty$.

Theorem

Let N_α be the number of nodes and $N^{(e)}_\alpha$ the number of edges in the undirected graph restriction, Z_α. Then

$$N^{(e)}_\alpha = \begin{cases} \Theta \left(N^2_\alpha \right) & \text{if } W \text{ is finite-activity} \\ o \left(N^2_\alpha \right) & \text{if } W \text{ is infinite-activity} \end{cases}$$

almost surely as $\alpha \to \infty$.
Particular case: Generalized Gamma Process

- Lévy intensity
 \[\frac{1}{\Gamma(1 - \sigma)} w^{-1-\sigma} e^{-\tau w} \]
 with \(\sigma \in (-\infty, 0] \) and \(\tau > 0 \)
 or \(\sigma \in (0, 1) \) and \(\tau \geq 0 \)

- Infinite activity for \(\sigma \geq 0 \)

- Exact sampling of the graph via an urn process

- Power-law degree distribution

[Brix, 1999, Lijoi et al., 2007]
Particular case: Generalized Gamma Process

Erdős-Rényi $G(1000, 0.05)$

Gamma Process

GGP ($\sigma = 0.5$)

GGP ($\sigma = 0.8$)
Particular case: Generalized Gamma Process

Power-law degree distributions

- Power-law like behavior providing a heavy-tailed degree distribution
- Higher power-law exponents for larger σ
- The parameter τ tunes the exponential cut-off in the tails.
Particular case: Generalized Gamma Process
Posterior inference

- Let $\phi = (\alpha, \sigma, \tau)$ with improper priors
- We want to approximate

 $$p(w_1, \ldots, w_{N\alpha}, w_*, \phi | (z_{ij})_{1 \leq i, j \leq N\alpha})$$

- Latent count variables $\bar{n}_{ij} = n_{ij} + n_{ji}$

- Markov chain Monte Carlo sampler
 1. Update the weights $(w_1, \ldots, w_{N\alpha})$ given the rest using an Hamiltonian Monte Carlo update
 2. Update the total mass w_* and hyperparameters $\phi = (\alpha, \sigma, \tau)$ given the rest using a Metropolis-Hastings update
 3. Update the latent counts (\bar{n}_{ij}) given the rest from a truncated Poisson distribution
Simulated data

- Simulation of a GGP graph with $\alpha = 300, \sigma = 1/2, \tau = 1$
- 13,995 nodes and 76,605 edges
- MCMC sampler with 3 chains and 40,000 iterations
- Takes 10min on a standard desktop with Matlab
(a) α

(b) σ

(c) τ

(d) w_*
Simulated data

(a) 50 nodes with highest degree
(b) 50 nodes with lowest degree

Figure: 95 % posterior intervals of (a) the sociability parameters w_i of the 50 nodes with highest degree and (b) the log-sociability parameter $\log w_i$ of the 50 nodes with lowest degree. True values are represented by a green star.
Real network data

- Assessing the sparsity of the network
- We aim at reporting $\Pr(\sigma \geq 0|z)$ based on a set of observed connections (z)
- 12 different networks
- $\sim 1,000 - 300,000$ nodes and $10,000 - 1,000,000$ edges
Real network data

| Name | Nb nodes | Nb edges | Time (min) | Pr($\sigma \geq 0|z$) | 99% CI σ |
|-------------|----------|----------|------------|-------------------------|-----------------|
| facebook107 | 1,034 | 26,749 | 1 | 0.00 | [−1.06, −0.82] |
| polblogs | 1,224 | 16,715 | 1 | 0.00 | [−0.35, −0.20] |
| USairport | 1,574 | 17,215 | 1 | 1.00 | [0.10, 0.18] |
| UCirvine | 1,899 | 13,838 | 1 | 0.00 | [−0.14, −0.02] |
| yeast | 2,284 | 6,646 | 1 | 0.28 | [−0.09, 0.05] |
| USpower | 4,941 | 6,594 | 1 | 0.00 | [−4.84, −3.19] |
| IMDB | 14,752 | 38,369 | 2 | 0.00 | [−0.24, −0.17] |
| cond-mat1 | 16,264 | 47,594 | 2 | 0.00 | [−0.95, −0.84] |
| cond-mat2 | 7,883 | 8,586 | 1 | 0.00 | [−0.18, −0.02] |
| Enron | 36,692 | 183,831 | 7 | 1.00 | [0.20, 0.22] |
| internet | 124,651 | 193,620 | 15 | 0.00 | [−0.20, −0.17] |
| www | 325,729 | 1,090,108| 132 | 1.00 | [0.26, 0.30] |
Conclusion

- Statistical network models
- Build on exchangeable random measures
- Sparsity and power-law properties
- Scalable inference
- Extensions to more structured models: non-negative factorization, block-model, covariates, dynamic networks, etc

Matlab code available

http://www.stats.ox.ac.uk/~caron/code/bnpgraph/

The average distances in random graphs with given expected degrees.

Power-law distributions in empirical data.

Hoover, D. N. (1979).
Relations on probability spaces and arrays of random variables.
Preprint, Institute for Advanced Study, Princeton, NJ.

Probabilistic symmetries and invariance principles.
Springer.

Kingman, J. (1967).
Completely random measures.

Controlling the reinforcement in Bayesian non-parametric mixture models.

