QUDA: A Direct Approach for Sparse Quadratic Discriminant Analysis

Chenlei Leng

8808. Warwick 200 Statistics

Joint with Binyan Jiang (HKPU) and Xiangyu Wang (Duke)

OxWaSP Workshop

9 Oct, 2015

Motivation

OxWaSP: Statistical Science for 21st Century data-intensive environments and large-scale models

- A paradigm shift from hypothesis driving to data driven scientific research: Huge datasets are collected in -omics, brain imaging, astronomy, engineering, and so on.
- The numbers of the features (variables) are huge relative to the sample size: "Fat Data".
- Features interact in interesting ways.
- The aim of this talk is to introduce a "simple model" for "big data" classification.

LDA and QDA

The setup

Consider the classification problem in which observations from class 1 follow $X \sim N\left(\mu_{1}, \Sigma_{1}\right)$,
observations from class 2 folllow $Y \sim N\left(\mu_{2}, \Sigma_{2}\right)$,
where

- $\mu_{1}, \mu_{2} \in \mathbb{R}^{p}$ are the mean vectors
- $\Sigma_{1}, \Sigma_{2} \in \mathbb{R}^{p \times p}$ are the covariance matrices.

Given a dataset, the goal is to classify a future observation z to one of the two classes such that the classification error is made as small as possible.

Bayes' rule

The optimal Bayes rule classifies an observation z to class 1 if

$$
\pi_{1} f\left(z \mid \mu_{1}, \Sigma_{1}\right)>\pi_{2} f\left(z \mid \mu_{2}, \Sigma_{2}\right)
$$

where $f(\cdot \mid \mu, \Sigma)$ is the multivariate normal pdf with mean μ and Σ, and π_{1} and π_{2} are the two prior probabilities.

- When $\Sigma_{1}=\Sigma_{2}$, the procedure becomes linear discriminant analysis (LDA);
- When $\Sigma_{1} \neq \Sigma_{2}$, the procedure becomes quadratic discriminant analysis (QDA). The focus of the talk.

Outline

 Statistics- The problem (with high-dimensional data)
- QUDA
- Simulation and data analysis
- Theory
- Discusssion

The oracle

The Bayes discriminant function consists of z 's satisfying

$$
\pi_{1} f\left(z \mid \mu_{1}, \Sigma_{1}\right)=\pi_{2} f\left(z \mid \mu_{2}, \Sigma_{2}\right)
$$

or

$$
D(z)=(z-\mu)^{T} \Omega(z-\mu)+\delta^{T}(z-\mu)+\eta
$$

where

- $\mu=\left(\mu_{1}+\mu_{2}\right) / 2$: the mean of the two centroids,
- $\Omega=\Sigma_{2}^{-1}-\Sigma_{1}^{-1}$: the difference of the two precision matrices,
- $\delta=\left(\Sigma_{1}^{-1}+\Sigma_{2}^{-1}\right)\left(\mu_{1}-\mu_{2}\right)$,
- $\eta=2 \log \left(\pi_{1} / \pi_{2}\right)-\frac{1}{4}\left(\mu_{1}-\mu_{2}\right)^{T} \Omega\left(\mu_{1}-\mu_{2}\right)-\log \left|\Sigma_{2}\right|+\log \left|\Sigma_{1}\right|$.

Reduces to that of LDA if $\Sigma_{1}=\Sigma_{2}$.

Remarks

The discriminant function

$$
D(z)=(z-\mu)^{T} \Omega(z-\mu)+\delta^{T}(z-\mu)+\eta .
$$

- This can be seen as a two-way interaction model as in regression, hence the name QDA
- Nonzeros in Ω are the important interactions
- Nonzeros in δ are the important main effects

Sample estimates

Given data $X_{j}, j=1, \ldots, n_{1}$ from class 1 and $Y_{k}, k=1, \ldots, n_{2}$ from class 2 , we can estimate μ_{i} and $\Sigma_{i}, i=1,2$, as

$$
\begin{gathered}
\hat{\mu}_{1}=\frac{1}{n_{1}} \sum_{j=1}^{n_{1}} X_{j}, \hat{\mu}_{2}=\frac{1}{n_{2}} \sum_{j=1}^{n_{2}} Y_{j} ; \\
\hat{\Sigma}_{1}=\frac{1}{n_{1}} \sum_{j=1}^{n_{1}}\left(X_{j}-\hat{\mu}_{1}\right)\left(X_{j}-\hat{\mu}_{1}\right)^{T}, \hat{\Sigma}_{2}=\frac{1}{n_{2}} \sum_{j=1}^{n_{2}}\left(Y_{j}-\hat{\mu}_{2}\right)\left(Y_{j}-\hat{\mu}_{2}\right)^{T} ; \\
\hat{\pi}_{1}=n_{1} /\left(n_{1}+n_{2}\right), \hat{\pi}_{2}=n_{2} /\left(n_{1}+n_{2}\right) .
\end{gathered}
$$

The plug-in estimates

- $\hat{\mu}=\left(\hat{\mu}_{1}+\hat{\mu}_{2}\right) / 2$
- $\hat{\Omega}=\hat{\Sigma}_{2}^{-1}-\hat{\Sigma}_{1}^{-1}$
- $\hat{\delta}=\left(\hat{\Sigma}_{1}^{-1}+\hat{\Sigma}_{2}^{-1}\right)\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)$
- $\hat{\eta}=2 \log \left(\hat{\pi}_{1} / \hat{\pi}_{2}\right)-\frac{1}{4}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{T} \hat{\Omega}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)-\log \left|\hat{\Sigma}_{2}\right|+\log \left|\hat{\Sigma}_{1}\right|$

Our focus

Problem: High-dimensional $p \gg \max \left\{n_{1}, n_{2}\right\}$.

- $\hat{\mu}=\left(\hat{\mu}_{1}+\hat{\mu}_{2}\right) / 2:$?
- $\hat{\Omega}=\hat{\Sigma}_{2}^{-1}-\hat{\Sigma}_{1}^{-1}: ?$
- $\hat{\delta}=\left(\hat{\Sigma}_{1}^{-1}+\hat{\Sigma}_{2}^{-1}\right)\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right): ?$
- $\hat{\eta}=2 \log \left(\hat{\pi}_{1} / \hat{\pi}_{2}\right)-\frac{1}{4}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)^{T} \hat{\Omega}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)-\log \left|\hat{\Sigma}_{2}\right|+\log \left|\hat{\Sigma}_{1}\right|:$?

Estimating Ω

Assume Ω sparse. Note

$$
\Sigma_{2} \Omega \Sigma_{1}=\Sigma_{1} \Omega \Sigma_{2}=\Sigma_{1}-\Sigma_{2}
$$

If we define a loss function as

$$
\operatorname{Tr}\left(\Omega^{T} \Sigma_{1} \Omega \Sigma_{2}\right)-\operatorname{Tr}\left(\Omega\left(\Sigma_{1}-\Sigma_{2}\right)\right)
$$

which is minimised when $\Omega=\Sigma_{2}^{-1}-\Sigma_{1}^{-1}$.
Define the estimator as

$$
\hat{\Omega}=\arg \min _{\Omega \in R^{p \times p}} \frac{1}{2} \operatorname{Tr}\left(\Omega^{T} \hat{\Sigma}_{1} \Omega \hat{\Sigma}_{2}\right)-\operatorname{Tr}\left(\Omega\left(\hat{\Sigma}_{1}-\hat{\Sigma}_{2}\right)\right)+\lambda\|\Omega\|_{1}
$$

where $\|\Omega\|_{1}$ is the ℓ_{1} penalty of the vectorized Ω.

Algorithm

The formulation is a convex optimisation problem. Use the alternating direction method of multipliers (ADMM) by writing

$$
\min _{\Omega \in R^{\triangleright \times p}} \frac{1}{2} \operatorname{Tr}\left(\Omega^{T} \hat{\Sigma}_{1} \Omega \hat{\Sigma}_{2}\right)-\operatorname{Tr}\left(\Omega\left(\hat{\Sigma}_{1}-\hat{\Sigma}_{2}\right)\right)+\lambda\|\Psi\|_{1} \text {, s.t. } \Psi=\Omega \text {. }
$$

The augmented Lagrangian as

$$
\begin{array}{r}
L(\Omega, \Psi, \Lambda)=\frac{1}{2} \operatorname{Tr}\left(\Omega^{T} \hat{\Sigma}_{1} \Omega \hat{\Sigma}_{2}\right)-\operatorname{Tr}\left(\Omega\left(\hat{\Sigma}_{1}-\hat{\Sigma}_{2}\right)\right)+\lambda\|\Psi\|_{1}+ \\
\operatorname{Tr}(\Lambda, \Omega-\Psi)+\frac{\rho}{2}\|\Omega-\Psi\|_{F}^{2} .
\end{array}
$$

Given the current estimate $\Omega^{k}, \Psi^{k}, \Lambda^{k}$, we update successively

$$
\begin{aligned}
\Omega^{k+1} & =\underset{\Omega \in R^{\rho \times p}}{\arg \min } L\left(\Omega, \Psi^{k}, \Lambda^{k}\right), \\
\Psi^{k+1} & =\underset{\psi \in R^{\rho \times p}}{\arg \min } L\left(\Omega^{k+1}, \Psi, \Lambda^{k}\right), \\
\Lambda^{k+1} & =\Lambda^{k}+\rho\left(\Omega^{k+1}-\Psi^{k+1}\right) .
\end{aligned}
$$

Turns out the updates for Ω and ψ have closed-form solutions.

1. Initialize Ω, Ψ and Λ. Fix ρ. Compute the singular value decomposition $\hat{\Sigma}_{1}=U_{1} D_{1} U_{1}^{T}$ and $\hat{\Sigma}_{2}=U_{2} D_{2} U_{2}^{T}$, and compute B where $B_{j k}=1 /\left(d_{1 j} d_{2 k}+\rho\right)$. Repeat steps 2-4 until convergence;
2. Compute $A=\left(\hat{\Sigma}_{1}-\hat{\Sigma}_{2}\right)-\Lambda+\rho \Psi$. Then update Ω as $\Omega=U_{1}\left[B \circ\left(U_{1}^{T} A U_{2}\right)\right] U_{2}^{T} ;$
3. Update ψ by soft-thresholding $\Omega+\frac{\Lambda}{\rho}$ elementwise by $\frac{\lambda}{\rho}$;
4. Update \wedge by $\Lambda \leftarrow \Lambda+\rho(\Omega-\Psi)$.

The convergence properties of ADMM are well studied. Improves the computational complexity of the algorithm in Zhao, Cai and Li (Bka, 2014) from $O\left(p^{4}\right)$ to $O\left(p^{3}\right)$.

Estimating the linear index δ

Recall $\delta=\left(\Sigma_{1}^{-1}+\Sigma_{2}^{-1}\right)\left(\mu_{1}-\mu_{2}\right)$. Note that

$$
\left(\Sigma_{1}+\Sigma_{2}\right) \delta=4\left(\mu_{1}-\mu_{2}\right)+\left(\Sigma_{1}-\Sigma_{2}\right) \Omega\left(\mu_{1}-\mu_{2}\right)
$$

A similar trick leads to the following estimator

$$
\hat{\delta}=\arg \min _{\delta \in R^{p}} \frac{1}{2} \delta^{T}\left(\hat{\Sigma}_{1}+\hat{\Sigma}_{2}\right) \delta-\hat{\gamma}^{T} \delta+\lambda_{\delta}\|\delta\|_{1}
$$

where $\hat{\gamma}=4\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)+\left(\hat{\Sigma}_{1}-\hat{\Sigma}_{2}\right) \hat{\Omega}\left(\hat{\mu}_{1}-\hat{\mu}_{2}\right)$ and $\|\cdot\|_{1}$ is the vector ℓ_{1} penalty.

This is exactly lasso!

Literature review

- Linear classifiers for high-dimensional data widely studied, Bickel and Levina (Bernoulli, 2004), Witten and Tibshirani (JRSSB, 2011), Shao et al. (AoS, 2011), Cai and Liu (JASA, 2011), Fan, Feng, and Tong (JRSSB, 2012), Mai, Zou, and Yuan (Bka, 2012).
- Quadratic classifiers attract attention more recently, Li and Shao (2015), Fan et al. (AoS, 2015).
- Li and Shao: Too many assumptions
- Fan et al: A two-step method by first screening then penalised logistic regression, work for Ω with a special structure
- Zhao, Cai and Li (Bka, 2014): Apply Dantzig selector for estimating Ω, computationally demanding

Numerical studies

Methods to be compared

- QUDA
- LDA and QDA whenever possible
- DSDA (Mai, Zou and Yuan, 2012)
- Penalised logistic regression with ℓ_{1} penalty, main effects only (PLR), main and interactions (PLR2)
- IIS-SQDA (Fan et al. AoS, 2015)

Simulation Setup

$p=50,200$, or 500, $n_{1}=n_{2}=100$.
$X \sim N\left(u_{1}, \Sigma_{1}\right)$ and $Y \sim N\left(u_{2}, \Sigma_{2}\right)$ with $u_{2}=0$ and $u_{1}=\Sigma_{1} \beta$
with $\beta=(0.6,0.8,0, \cdots, 0)^{T}$. Denote $\Omega_{i}=\Sigma_{i}^{-1}$.

- Model 1: Ω_{1} is a band matrix with $\left(\Omega_{1}\right)_{i i}=1$ and $\Omega_{i j}=0.3$ for $|i-j|=1$. $\Omega_{2}=\Omega_{1}+\Omega$, where a 3×3 submatrix of Ω is nonzero.
- Model 2: We set $\left(\Omega_{1}\right)_{i j}=0.5^{|i-j|}$ and let $\Omega_{2}=\Omega_{1}+\Omega$, where $\Omega=I_{p}$.
- Model 3: Ω_{1} is the same as Model 2 and $\Omega_{2}=\Omega_{1}$.
- Model 4: Ω_{1} is the same as Model 2 and Ω is a band matrix defined as $(\Omega)_{i i}=1$ and $(\Omega)_{i j}=0.5$ for $|i-j|=1$. Let $\Omega_{2}=\Omega_{1}+\Omega$.
- Model 5: $\Omega_{1}=I_{p}$ and $\Omega_{2}=\Omega_{1}+\Omega$ where Ω is a random sparse symmetric matrix with conditional number 10 and non-zero density $n_{1} / p^{2} \times 0.7$.

Table 1: Model 1: a $3 * 3$ dense submatrix

p	Method	MR (\%)	FP.main	FP.inter	FN.main	FN.inter
50	LDA	$39.43(0.15)$	-	-	-	-
	QDA	$43.47(0.10)$	-	-	-	-
	PLR	$36.12(0.26)$	$5.95(0.93)$	-	$1.21(0.04)$	-
	DSDA	$35.05(0.22)$	$8.81(1.06)$	-	$0.07(0.03)$	-
	PLR2	$30.15(0.44)$	$0.51(0.14)$	$11.26(2.78)$	$0.60(0.05)$	$2.62(0.09)$
	IIS-SQDA	$27.56(0.27)$	$5.60(0.82)$	$2.16(0.32)$	$0.19(0.04)$	$2.05(0.09)$
	QUDA	$26.50(0.28)$	$0.85(0.18)$	$35.26(4.72)$	$0.39(0.07)$	$3.74(0.14)$
	Oracle	$23.04(0.09)$	-	-	-	-
200	PLR	$37.62(0.34)$	$7.82(1.87)$	-	$1.47(0.05)$	-
	DSDA	$36.34(0.30)$	$15.06(3.37)$	-	$0.36(0.05)$	-
	PLR2	$32.55(0.53)$	$0.25(0.06)$	$17.44(3.63)$	$0.90(0.05)$	$2.72(0.08)$
	IIS-SQDA	$26.94(0.31)$	$6.43(1.24)$	$0.78(0.17)$	$0.42(0.05)$	$2.22(0.08)$
	QUDA	$26.51(0.20)$	$0.29(0.07)$	$25.48(2.75)$	$0.82(0.08)$	$4.14(0.12)$
	Oracle	$21.93(0.08)$	-	-	-	-
500	PLR	$38.82(0.33)$	$9.31(1.99)$	-	$1.58(0.05)$	-
	DSDA	$37.10(0.29)$	$16.06(3.02)$	-	$0.42(0.05)$	-
	PLR2	$35.45(0.64)$	$0.34(0.09)$	$55.69(12.67)$	$0.99(0.05)$	$3.05(0.10)$
	IIS-SQDA	$26.78(0.31)$	$3.22(1.09)$	$0.23(0.05)$	$0.98(0.02)$	$2.65(0.09)$
	QUDA	$26.68(0.27)$	$0.14(0.06)$	$10.96(1.38)$	$1.02(0.08)$	$4.36(0.09)$
	Oracle	$21.81(0.09)$	-	-	-	-

Table 2: Model 2: $\Omega=1$

p	Method	MR (\%)	FP.main	FP.inter	FN.main	FN.inter
50	LDA	$34.53(0.19)$	-	-	-	-
	QDA	$32.09(0.25)$	-	-	-	-
	PLR	$31.58(0.20)$	$7.51(0.55)$	-	$0.07(0.03)$	-
	DSDA	$29.89(0.16)$	$8.52(0.86)$	-	$0.16(0.04)$	-
	PLR2	$5.85(0.10)$	$1.14(0.11)$	$45.6(1.08)$	$0.14(0.04)$	$14.43(0.23)$
	IIS-SQDA	$11.75(0.13)$	$11.41(0.46)$	$11.8(0.56)$	$0(0)$	$37.53(0.11)$
	QUDA	$1.84(0.08)$	$4.12(0.49)$	$110.10(10.54)$	$0.28(0.05)$	$1.28(0.22)$
	Oracle	$0.65(0.02)$	-	-	-	-
200	PLR	$33.34(0.21)$	$10.79(0.70)$	-	$0.16(0.04)$	-
	DSDA	$30.37(0.23)$	$11.91(2.19)$	-	$0.29(0.05)$	-
	PLR2	$1.73(0.06)$	$0.01(0.01)$	$12.68(0.56)$	$1.08(0.05)$	$119.95(0.52)$
	IISQDA	$11.76(0.18)$	$25.39(0.66)$	$4.12(0.30)$	$0(0)$	$186.35(0.12)$
	QUDA	$0.39(0.18)$	$9.03(2.12)$	$724.35(19.52)$	$0.21(0.04)$	$6.05(0.35)$
	Oracle	$0(0)$	-	-	-	-
500	PLR	$34.04(0.24)$	$11.17(1.02)$	-	$0.30(0.05)$	-
	DSDA	$30.99(0.22)$	$14.61(2.64)$	-	$0.44(0.05)$	-
	PLR2	$1.68(0.06)$	$0(0)$	$5.52(0.33)$	$1.19(0.05)$	$401.47(0.59)$
	IISQDA	$12.37(0.16)$	$33.56(0.79)$	$1.92(0.20)$	$0(0)$	$485.93(0.12)$
	QUDA	$0.16(0.22)$	$24.33(2.18)$	$4.81 \mathrm{e} 3(290.1)$	$0.52(0.05)$	$58.09(1.10)$
	Oracle	$0(0)$	-	-	-	-

Table 3: Model 3: $\Omega=0$

p	Method	MR (\%)	FP.main	FP.inter	FN.main	FN.inter
50	LDA	$38.82(0.19)$	-	-	-	-
	QDA	$47.57(0.11)$	-	-	-	-
	PLR	$36.06(0.23)$	$7.73(0.58)$	-	$0.14(0.03)$	-
	DSDA	$34.82(0.24)$	$9.54(1.09)$	-	$0.26(0.04)$	-
	PLR2	$37.36(0.34)$	$0.60(0.10)$	$31.10(3.21)$	$0.39(0.06)$	$0(0)$
	IIS-SQDA	$35.10(0.22)$	$5.25(0.46)$	$10.85(0.96)$	$0.06(0.02)$	$0(0)$
	QUDA	$34.99(0.58)$	$0.82(0.20)$	$23.84(6.69)$	$0.35(0.07)$	$0(0)$
	Oracle	$31.68(0.10)$	-	-	-	-
200	PLR	$38.50(0.31)$	$12.90(1.08)$	-	$0.23(0.04)$	-
	DSDA	$36.27(0.28)$	$14.81(2.26)$	-	$0.41(0.05)$	-
	PLR2	$40.31(0.45)$	$0.15(0.05)$	$40.38(5.05)$	$0.74(0.06)$	$0(0)$
	II-SQDA	$36.32(0.25)$	$25.39(0.66)$	$6.03(0.50)$	$0(0)$	$0(0)$
	QUDA	$36.55(0.74)$	$1.70(1.38)$	$37.15(16.39)$	$0.89(0.09)$	$0(0)$
	Oracle	$31.54(0.10)$	-	-	-	-
500	PLR	$39.98(0.32)$	$14.79(1.4)$	-	$0.40(0.05)$	-
	DSDA	$37.07(0.29)$	$19.49(3.65)$	-	$0.59(0.05)$	-
	PLR2	$42.23(0.53)$	$0.03(0.02)$	$36.6(4.32)$	$1.07(0.06)$	$0(0)$
	IISQDA	$37.45(0.26)$	$14.53(1.38)$	$3.70(0.32)$	$0.07(0.26)$	$0(0)$
	QUDA	$37.95(0.76)$	$0.2(0.06)$	$57.49(14.74)$	$1.05(0.09)$	$0(0)$
	Oracle	$31.85(0.12)$	-	-	-	-

Table 4: Model 4: Ω is tridiagonal

p	Method	MR (\%)	FP.main	FP.inter	FN.main	FN.inter
50	LDA	$35.58(0.20)$	-	-	-	-
	QDA	$35.40(0.20)$	-	-	-	-
	PLR	$32.42(0.23)$	$8.03(0.57)$	-	$0.03(0.01)$	-
	DSDA	$31.39(0.21)$	$11.02(1.13)$	-	$0.09(0.03)$	-
	PLR2	$22.42(0.21)$	$1.49(0.14)$	$76.22(2.26)$	$0.06(0.03)$	$123.72(0.36)$
	IIS-SQDA	$24.67(0.17)$	$9.74(0.45)$	$17.44(0.86)$	$0(0)$	$136.56(0.20)$
	QUDA	$16.91(0.27)$	$0.55(0.14)$	$194.98(11.31)$	$0.61(0.08)$	$106.51(0.83)$
	Oracle	$3.22(0.04)$	-	-	-	-
200	PLR	$34.93(0.28)$	$12.71(0.88)$	-	$0.10(0.03)$	-
	DSDA	$32.64(0.26)$	$15.63(2.14)$	-	$0.21(0.04)$	-
	PLR2	$21.82(0.20)$	$0.30(0.05)$	$107.80(2.32)$	$0.40(0.05)$	$559.23(0.63)$
	IIS-SQDA	$25.25(0.20)$	$21.15(0.89)$	$8.56(0.61)$	$0(0)$	$586.60(0.13)$
	QUDA	$9.59(0.19)$	$0.31(0.08)$	$297.38(25.33)$	$0.82(0.09)$	$498.61(1.49)$
	Oracle	$0.28(0.02)$	-	-	-	-
500	PLR	$37.19(0.32)$	$15.68(1.27)$	-	$0.32(0.04)$	-
	DSDA	$33.83(0.30)$	$22.90(3.54)$	-	$0.45(0.05)$	-
	PLR2	$23.06(0.23)$	$0.05(0.02)$	$114.94(2.34)$	$0.79(0.05)$	$1455(0.65)$
	IIS-SQDA	$26.64(0.21)$	$32.74(1.24)$	$4.86(0.36)$	$0(0)$	$1486(0.13)$
	QUDA	$4.18(0.13)$	$0.20(0.04)$	$298.24(20.8)$	$0.42(0.07)$	$1315(2.41)$
	Oracle	$0(0)$	-	-	-	-

Table 5: Model 5: Ω is a random sparse matrix with 70 nonzeros

p	Method	MR (\%)	FP.main	FP.inter	FN.main	FN.inter
50	LDA	$39.21(0.20)$	-	-	-	-
	QDA	$46.41(0.17)$	-	-	-	-
	PLR	$35.76(0.26)$	$6.08(0.43)$	-	$0.01(0.01)$	-
	DSDA	$33.73(0.25)$	$8.08(0.99)$	-	$0.14(0.04)$	-
	PLR2	$36.62(0.39)$	$1.04(0.13)$	$45.83(3.99)$	$0.05(0.02)$	$63.69(0.39)$
	IS-SQDA	$35.56(0.29)$	$8.77(0.50)$	$14.85(0.83)$	$0(0)$	$61.18(0.26)$
	QUDA	$34.32(0.53)$	$0.52(0.12)$	$39.76(6.47)$	$0.58(0.08)$	$59.76(0.64)$
	Oracle	$32.36(0.25)$	-	-	-	-
200	PLR	$37.73(0.34)$	$9.68(0.89)$	-	$0.40(0.03)$	-
	DSDA	$34.58(0.35)$	$10.87(2.44)$	-	$0.11(0.03)$	-
	PLR2	$37.40(0.44)$	$0.32(0.06)$	$66.44(5.47)$	$0.31(0.06)$	$194.46(0.35)$
	II-SQDA	$33.22(0.28)$	$19.87(0.93)$	$6.16(0.41)$	$0(0)$	$191.37(0.10)$
	QUDA	$29.35(0.41)$	$0.10(0.05)$	$164.24(73.3)$	$1.27(0.07)$	$175.8(0.96)$
	Oracle	$20.09(0.27)$	-	-	-	-
500	PLR	$39.13(0.33)$	$14.39(1.29)$	-	$0.08(0.03)$	-
	DSDA	$34.76(0.25)$	$9.44(1.77)$	-	$0.16(0.04)$	-
	PLR2	$37.44(0.52)$	$0.16(0.05)$	$90.78(6.06)$	$0.43(0.06)$	$493.48(0.41)$
	IIS-SQDA	$30.50(0.26)$	$33.55(1.28)$	$3.18(0.28)$	$0(0)$	$491.32(0.09)$
	QUDA	$23.75(0.49)$	$4.03(2.91)$	$507.92(225.36)$	$1.59(0.06)$	$459.96(1.96)$
	Oracle	$4.16(0.08)$	-	-	-	-

Data analysis: A "small data"

Quora answer classifier.

- This is a data challenge available at http://www.
quora.com/challenges\#answer_classifier.
- The training data set contains 4,500 answers from QUORA which have been annotated with either "good" or "bad".
- For each answer, 20 features were extracted from the original sentences.
- The goal of this challenge is to automatically classify a new answer based on the 20 features.

Results

Table 6: Misclassification rate (\%) using 5 -fold cross-validation

Method	mean	standard error
LDA	18.84	0.50
QDA	30.33	0.72
PLR	17.89	0.60
DSDA	19.11	0.56
PLR2	17.56	0.71
IIS-SQDA	17.76	0.54
QUDA	$\mathbf{1 6 . 4 4}$	0.45

Data analysis: A "big data"

Prostate cancer data, taken from Singh, et al. (Cancer Cell, 2002)

- The data set contains genetic expression levels for $N=6033$ genes
- The sample size is 102 men with 50 normal control subjects and 52 prostate cancer patients.
- The goal is to identify genes that are linked with prostate cancer and predict potential patients.
- LDA and QDA not applicable as $n<p$.
- The difficulty lies in the interactions among genes.

Interaction

Figure 1: The plot for the gene 118 and gene 182. Left: joint scatter plot; Middle: marginal density of gene 118; Right: marginal density of gene 182.

Result

Look at the top 200 or 500 genes with the largest absolute values of the two sample t statistics.

Table 7: Misclassification rate (\%) for the prostate cancer data under 5-fold cross-validation

	$p=200$			$p=500$	
Method	mean	std error		mean	std error
PLR	11.00	2.45		13.00	4.06
DSDA	5.00	3.32		11.00	2.92
PLR2	13.00	4.47		23.00	3.39
IIS-SQDA	12.00	2.92		15.00	2.74
QUDA	$\mathbf{1 . 0 0}$	1.00		$\mathbf{2 . 0 0}$	1.22

Theory

For estimating Ω, assume the irrepresentable condition on $\Gamma=\Sigma_{2} \otimes \Sigma_{1}$ as

$$
\alpha=1-\max _{e \in S^{C}}\left|\Gamma_{e, S} \Gamma_{s, S}^{-1}\right|_{1}>0 .
$$

For estimating δ, assume the irrepresentable condition on $\Sigma=\left(\Sigma_{1}+\Sigma_{2}\right) / 2$ as

$$
\alpha_{\delta}=1-\max _{e \in S^{C}}\left|\Sigma_{e, D} \Sigma_{D, D}^{-1}\right|_{1}>0 .
$$

Results on estimating Ω

Theorem 1
By choosing

$$
\lambda=A_{1} \sqrt{\frac{\kappa \log p+\log C_{1}}{C_{2} n}},
$$

for some $\kappa>2$ and

$$
n>A_{2}\left(\kappa \log p+\log C_{1}\right),
$$

we have, with probability greater than $1-p^{2-\kappa}$,
(i) $\hat{\Omega}_{S^{c}}=0$;
(ii)

$$
\|\hat{\Omega}-\Omega\|_{\infty}<A_{3} \sqrt{\frac{\kappa \log p+\log C_{1}}{C_{2} n}}
$$

where A_{1}, A_{2} and A_{3} are quantities depending on the sparsity Σ_{1}, Σ_{2} and their Kronecker product, and C_{1}, C_{2} are constant.

Further results

Corollary 2

Under appropriate conditions, for any constant $\kappa>0$, choosing
$\lambda=C d^{2} \sqrt{\frac{\log p}{n}}$ for some constant $C>0$, if $d^{2} \sqrt{\frac{\log p}{n}} \rightarrow 0$, we
have with probability greater than $1-p^{2-\kappa}, \hat{\Omega}_{S^{c}}=0$ and

$$
\|\hat{\Omega}-\Omega\|_{\infty}=O\left(d^{2} \sqrt{\frac{\log p}{n}}\right) .
$$

Here d is the sparsity index of Ω.

Further results

Theorem 3
Under the same assumptions in Theorem 1 and assuming that

$$
\lambda_{\delta}=B_{1} \sqrt{\frac{\kappa \log p+\log C_{1}}{C_{2 \delta} n}},
$$

and

$$
n>B_{2} \cdot\left(\kappa \log p+\log C_{1}\right),
$$

we have with probability greater than $1-p^{2-\kappa}$,
(i) $\hat{\delta}_{D^{c}}=0$;
(ii)

$$
\|\hat{\delta}-\delta\|_{\infty}<B_{3} \sqrt{\frac{\kappa \log p+\log C_{1}}{C_{2 \delta} n}},
$$

where B_{1}, B_{2} and B_{3} depend on various quantities of the true parameters.

Further results

Corollary 4
Let $d_{0}=\max \left\{d, d_{\delta}\right\}$. Under additional assumptions, for any constant $\kappa>0$, by choosing $\lambda=C d_{0}^{2} \sqrt{\frac{\log p}{n}}$ for some constant $C>0$, and assume that $d_{0}^{3} \sqrt{\frac{\log p}{n}} \rightarrow 0$, we have with probability greater than $1-p^{2-\kappa}$,

$$
\|\hat{\delta}-\delta\|_{\infty}=O\left(d_{0}^{3} \sqrt{\frac{\log p}{n}}\right) .
$$

Risk

- Let $R(i \mid j)$ be the probabilities that a new observation from class i is misclassified to class j by Bayes' rule. The Bayes risk

$$
R=\pi_{1} R(2 \mid 1)+\pi_{2} R(1 \mid 2) .
$$

- $R_{n}(i \mid j)$ be the probabilities that a new observation from class i is misclassified to class j by QUDA. The misclassification rate of the QUDA rule is

$$
R_{n}=\pi_{1} R_{n}(2 \mid 1)+\pi_{2} R_{n}(1 \mid 2) .
$$

Risk results

Theorem 5
Under apprpriate assumptions, we have:
(i) if $d^{2} A_{3} \sqrt{\frac{\kappa \log p+\log C_{1}}{C_{2} n}}+d_{\delta} B_{3} \sqrt{\frac{\kappa \log p+\log C_{1}}{C_{2 \delta} n}} \rightarrow 0$, then
$R_{n}-R=O_{p}\left(d^{2} A_{3} \sqrt{\frac{\kappa \log p+\log C_{1}}{C_{2} n}}+d_{\delta} B_{3} \sqrt{\frac{\kappa \log p+\log C_{1}}{C_{2 \delta} n}}\right) ;$
(ii) with probability greater than $1-3 p^{2-\kappa}$ for some constant $\kappa>2$,

$$
R_{n}-R=O\left(\left(d^{2} A_{3} \log p \sqrt{\frac{\kappa \log p+\log C_{1}}{C_{2} n}}+d_{\delta} B_{3} \sqrt{\log p} \sqrt{\frac{\kappa \log p+\log C_{1}}{C_{2 \delta} n}}\right)\right) .
$$

Remarks

- Results for estimating Ω similar to those in Zhao, Cai and Li (2014).
- When $\Sigma_{1}=\Sigma_{2}$, results are similar to sparse LDA in Mai, Zou and Yuan (2011) and Cai and Liu (2011).
- The error rate of $\hat{\delta}$ is a factor times of that of $\hat{\Omega}$. It doesn't affect the misclassification error nevertheless.

Discussion

- Lots of room to develop "old simple models" for 21st century data;
- My research tends to blend methodology, computation, theory and application;
- To students: Talk to me if you are looking for projects.

Reference: http://arxiv.org/abs/1510.00084.

$$
\begin{aligned}
& \text { GQ } \\
& \text { KEEP } \\
& \text { CALM } \\
& \text { AND } \\
& \text { USE } \\
& \text { QUDA }
\end{aligned}
$$

